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Abstract—A numerical method to determine the variations of temperature is presented. The problem of

measurement of the variations of temperature is mathematically modelled with the help of the one-

dimensional heat conduction equation. This equation describes the heat transfer through an insulated long

cylindrical rod. The variation of the temperature which is produced near one end of the rod is determined

using some measurements of lemperature in the other end of the rod and the mathematical model. This
rod works as an attenuator of high lemperatures and as an amplifier of low temperatures.

INTRODUCTION

IT 1s KNOWN that for the measurement of temperature
we use some temperature transducers. They are div-
ided in two classes : passive transducers and self-gen-
erating transducers. Thermistors, resistance—tem-
perature detectors, semiconductor temperature
sensors are in the first class. Thermocouples are
important elements in the second class [1, 2].

In this work the authors consider the problem of
measurement of the temperature in which the
unknown temperature is not determined directly using
temperature transducers. It is determined through the
formulation of the measurement problem as an opti-
mal control problem. The last problem can be solved
using a numerical computer.

We use an ensemble which has as the principal
component a long cylindrical rod with a diameter that
is as small as possible. The material from which the
rod is developed is chosen so that it satisfies the fol-
lowing requirements :

e The melting temperature must be higher than the
temperature to be measured ;

e Perfectly homogeneous;

o The thermal conductivity coefficient and the ther-
mal exchange coefficient must vary as little as possible
with the temperature.

Figure 1 shows the scheme of the ensemble.
The rod will be covered by a thermic insulating
layer made from ceramics fibre. If necessary, above it

t Author for correspondence.

we shall place a protected cover against corrosive
action of the medium in which the measurements are
realized.

One end of the rod will not be covered by the
insulated layer. This will be the end which will be in
contact with the point in which we want to measure
the variation of the temperature. This end we shall
name ‘the hot end’.

The other end we shaill name ‘the cold end’. In a
small area of this end we place equidistantly, on a
generating line of the rod, some temperature trans-
ducers, e.g. thermocouples. These shall be placed
directly on the rod, under the thermic insulating layer.
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C one positive real conslant

C, thermal exchange coefficient between rod
and medium for measurement [m ']

C*(Q). (ke N) sct ol the conuinuous
differentiable {unctions definite on
Q till the order x

C([0,7T]:X) space of the continuous
functions [rom [0. T] to X

H(Q) = W (Q). (SeN) spacc ol the

functions Ye L(Q) which have all the
derivatives ull the order S belonged at

L)
Inf  greatest lower bound
L length of the rod [mm]

L, length of the part of the rod on which the
temperalture transducers are not placed
[mm]

L"(Q). (Pe N*) space ol the [unclions
P-sumable on Q

L"(0,T: X). (X-Banach spacc over R) space
of the functions P-sumable from [0, 7] 1o
X

n number of the temperature transducers on
the rod

N natural numbers system

N*  non-zero natural numbers systcm

R real numbers system

R*  positive and non-zero real numbers
syslem

R"  linear space ol n dimension on the real
corp

! time [s]

T time of measurement of the variation of
temperature which is produced near the
hot end of the rod [s]

NOMENCLATURE

v unknown temperature which must be
measured [K]

U, 5 U convergence of the scquence U, at U
in the topological space W

U=[M, . M.] temperature range where the
unknown lemperature U could be situated
(K]

WHAP([0, T): X), (X-Banach space) space of
the functions Ye L*(0. T: X) so thal
Yicrel"(0.T: X). 1 < j< K KeN

X distance on the rod against the hot end
[mm]
Y(r.x) temperature of the rod at the

moment / in the point x [K]

Y, (x)nital temperature in the point v ol the
rod, Y,(x) = Y(0,x) [K]

Y(r.x) lemperature of a point [rom the cold
end of the rod which 1s measured by the
temperature transducers [K]

Y. Y'(n.Y, Y, (), Y, x) derivative of the
following function Y: (0, T)x (0.L) » X
ol ¢

Y. Y.(t.x) derivalive of the following

function Y: (0. TYx (0, L) —» X ol x
Y... Y. (t.x) derivative of the following
function Y,.: (0. 7)x (0, L) - X of x.

Greek symbols

o thermal conductivity coefficient of the rod
[m*s™']
¢/0v  exlertor normal derivative at ¢Q

dQ  boundary o[ Q
Q an open and bounded subsel of R".

We consider there are n transducers on the rod. They
are coupled with a compuler using some analogue—
digital converters and some memories.

We shall explain the work of this ensemble when
the unknown temperature is higher than the tem-
perature of the medium.

We wish Lo measure the unknown variation of the
lemperature which appears near the hot end of the
rod. We consider this temperature U is constanl dur-
ing the time of measurement 7. This variation of the
lemperature is as a step [unclion.

The length of the rod L will be determined by the
practical situation.

During time 7, the variations ol the lemperature
are measured with the » transducers from the cold
end.

It is clear from the above considerations that the
temperature of the cold end will be much smaller than
the measured temperature.

Thus, it can be considered that this ensemble
realizes the function of an attenuation of temperature.
The central idea ol measurement is the calculation
ol the unknown temperature using Lhe variations of
temperature of those n transducers in the time ol
measurement 7.

Certainly the ensembie works in a similar manner
when we want Lo measure lemperatures smaller than
the temperature ol the medium. In this case il can be
considered thal it realizes the function of an amplifier
of temperature.

THEORETICAL APPROACH

The phenomenon described above is modelled by a
partial differenuial equation of parabolic type, named
Lthe heal equation,

Y (1.x)—aY (t.x) =0,

1e(0,T), xe(0,L)

(1.1)
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with the boundary conditions. of the Neumann type:

oY
;Jhm=-ﬁﬂhm=CmU—anL:emT)
Y
o (. Ly=Y (u.L)y=0, (e(0.7T) (1.2)
and Lhe initial condition :
Y(0.x) = Y, (v). xe(0.L) (1.3)

where xe R*, C, e R*, Y, e H'(0, L).

The value of the measured lemperature {7 will be
determined {rom the solution of the following prob-
lem.

Minimizc :

T I8
®(U)=J f [Y(r.x)= Y(r.x) dxdr  (P)

Ly

where  Yel*((0.T)x(L,.L)). UeU=[M, . M,]
< R, and Y(1.x) is the solutlion of the above problem
(1.1)~(1.3). solution which corresponds to U. In
the above relation, Y(r.x) represenls Lhe tempera-
tures of the points rom the cold end ol the rod.

They are oblained from an interpolation technique ol

the experimental data acquired by the transducers T,
T...... T,.

The lunctional ®(U) has the semnification ol the
quadrauc mean error between the values which were
calculated and those which were measured n the cold
end.

It is observed that the problem (1.1)—(1.3) admils
only a solution Ye W"({0.T]: L (0. L) ~n L*(0.T:
H'(0,L)). In addition. the function Y — Y(r) is

weak continuous from [0.T] to H'(0.T), that is i

U, % Uthen (U,.t) = (U.t). Vre H'(0. L) [3].

We shall observe that the problem (P) admits at
least an opuimal solution, that is, il exists (U*.r*)
so that U*eU=[M, . M.] and Y* is the opumal
solution of the problem (1.1)—(1.3) which corresponds
to U*.

Thal 1s equivalent Lo:

i i1
fj|wun—fmnrmm
o Ji,

In[ ®(U).

t'cl

d(U*)

we nole ¢ = Inf ®(U). It is evident
tel

that ¢ = 0. From this it results thal it exists
HU,. ¥,)!.cys0 that ¥, is the solution ol the problem
(1.1)—(1.3) which corresponds to U< U and

For proving,

T {1 . . 1
(ISJ J | Y (. x)= Y. x)|"dxdr <d+ .
0 1. n

(2)

Because {U,} v is 2 bounded system of functions,
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it means that a subsystem of this (for which we use
identical notation), onc obtains : U, — U'* (the Cesaro
lemma).

Muluplying (1.1} with
we oblain :

Y, and Y. respecuvely.

YO0+ 1Y - < C

where Cis a positive rcal constant. The prool of this
resull is clear. For example il we muluply (1.1) by Y.
we obluin:

Y,Y,—a¥,Y, =0.
which is equivalent to

YY) —2Y, ¥, =0.

{

Integrating on (0. T) x (0. L) we obtain :

l ! I I
j'[ J (Y,)! d.\‘dl—aj J Y, Y, dxdr=0.
- Ju 0 )] 0

and il’ we use Green's theorem and relation (1.2):

J . oY
+1J <J vY; d.\'—J‘ Y. F'rr> dr=0
0 0 oy OV

1" 1 (!
= ZJ: Y x)ydy— 7'[ Y (0. x) dx

) - )

i I3
+1J‘ J VY!dvdi=0
0 0

[ I3
QJ Yo(r.x)dy = J Y, (0,x) dx
{ a

7 i
—21J J‘ V)j d\d’:” }'u(l)llljill.llg C.
[N ]

1]
In the same manner it results that:
Yol o ey € C.

Thus. we obtained the above inequality.

Using the Arzeld lemma it results that Lthe system
ol functions Y, is relatively compact in
C([0. T]: L*(0.L)). From that for a subsystem of
functions ol ¥, (usingidentical notalion) onc obtains:

Y,

L= YE in C([0,T]: L0, L)) 3)
and that Y* is the solution of the problem (1.1)—(1.3),
the solution which corresponds Lo U*.

From (2) and (3) it [ollows theretorc that ®((',) —
OU*).

Hence, (U*. Y*) is an optimal pair [or the problem
(P).

In succession, we shall find the optimal conditions
for the problem (P).

Theorem. The pair (U*, Y*) is an optimal one
for the problem (P) if and only il
Pe W3[0, T]: L0, L) n LY0. T: W>(0. L)) so
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that P is a solution of the problem:

Y*— Y., (.x)e(0,TYx(L, L)
PitaP = {0, (L x) (0, T) x (0. L))
4.1
(jTP(t,O) — _P.(1.0)= —C,P, 1(0.T)
v
‘;—C(r,L)=P,.(:,L)=0, (€(0.T) (4.2)
P(T,x) =0, xe(0,L) (4.3)

and it happens:

M, iff P(1,0)dt >0
Ut = ’ (5)
-
M, ifj P(:,0)di < 0.
0

Remark. Because PelL*(0,T;W?>%(0,L)) and
W0, L) c C((0, L)) therefore it is significant to

speak about
.
J P(:,0) dr.
0

Proof: We consider Pe W'([0,T]: L(0,L))n
L*(0,T; W**(0,L)) the solution of the problem
(4.1)-(4.3).

The existence of the solution of the problem (4.1)-
(4.3) is demonstrated in more general conditions in
ref. [4].

If (U*, Y*) 1s an optimal pair for the problem (P),
then:

T (1L
J. j [Y*(e,x)— P (1, x)[* dx dt
o Ji,

T L
<f j | YY" *(1,x)— ¥ (t,x)|*dx dt  (6)
o Jr,

Yi>0, VveR,
Yv>0,

if U*e(M,, M),
ifU* =M,
ifU* =M,

and
Vo<,

where YY*** is the solution of the problem (1.1)~
(1.3) which corresponds to U*+ Av.
From (6) 1t results that:

T (L
J‘ J‘ (YU'+).1'_ y*)(yu'+h-+ Y*—
o JiL,

We divide the above expression through A and then
we realize A — 0. We obtain:

27)dxdr = 0.

J. ‘[_Z(t,x)[}’*(t,x)—f’(l,x)] dxdr>0, (7)

where Ze W"([0, T]; L*(0, L))~ L*(0, T; H'(0, L))
is the solution of the problem:
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Z—aZ =0, (1,x)e((0,T)x(0,L)) (8.1

i—f(l,0)= —Z.(,0) = =C(Z(t,0)—r), te(0,T)
0

((T‘Z(t,L) =Z (. L)y=0, te(0,7) (8.2)

Z(0,x) =0, xe(0,L). (8.3)

We multiply (4.1) by Z. integrate on (0, 7) x (0,L)
and obtain:

J J. (PZ+aP, Z)dxd:t = J. JZ(Y* Y)dxds

oj J (P.Z—aP.Z,) dxdt

f [~ (1,0)Z(t, 0)+ (t L)Z(t, L)]

=J j Z(Y*—Y)dxds
0 1

Using (4.2), (4.3), (8.3) we get:

T (L
—J. J (PZ,+aP.Z,) dxdt
0

0

—af C,P(t,0)Z(t,0) dt

T 1.
=j f Z(Y*—TV)dxdr. (9)

o JL,

We multiply (8.1) by P, integrate on (0, T) x (0, L)
and acquire:

T (L
J‘ f (ZP—aZ P)dxdi=0
0 0
T (L
<:J. f (Z,P+oZ P, dxd:
0 0

oz 0z
—a — (L, 0)P(1,0)+ — (1, L)P(¢, L) |dt =
o | ov ov
Using (8.2) we obtain:
T {1
f J (Z,P+aoZ . P.)dxd:
0 0
-
= —aJ‘ C,(Z(t,0)—0v)P(+,0) dt
o -
T (L
oJ' J (Z,P+aZ . P.)dxdrs
0
.
= —aJ‘ C,Z(1,0)P(t,0) dt
0

C\vP(1,0) dr. (10)
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From (9) and (10) we get:

T i T
J J Z(Y*—Y)dxdr = —aC,J‘ P(1,0)u dr.
0 1 0

(1n
From (7) and (11) we get:

.
—otC,DJ~ P(.0)dt = 0.
0

Hence,

-
J. P(t.O)dt>0=r<0=U*=M,
0

0

.
j P(1,0)di <0=>r20=U*=M,.

Consequently, (5) is true, hence the necessary con-
dition was demonstrated.

The sufficiency of the conditions (4) and (5) results
immediately from the linearity of the problem (1.1)-
(1.3) and the convexity of the cost functional ®(U)
[5].

Remark. The problem (P) can be looked at as a
problem with impulsional control on the boundary,
for the heat equation, in the domain Q = (0, L) = R",
with N = 1. In the case N =2 or N = 3 the problem
is very difficult [6]. It could certainly use a model in
which Q ¢ R? or Q = R*. We stopped here with the
model which appeared to be suitable to the enunciated
problem.

NUMERICAL APPROACH

For the numerical calculation of the temperature
U, which is an optimal control problem, as is seen
before, we shall use one type of gradient algorithm.

In view of the relations (1.1)—(1.3), (4.1)-(4.3), (5),
we consider the following iterative algorithm:

U™ =8,U'+(1-6)0,
where :
-
M,, iff Pi(t,0)dt >0

. 0
pi =

T
M., ifJ P/(1,0)dt < 0.

0

U/, P/ are computed from:

Y/—aYi =0, (1,x)e(0,T)x(0,L)
Yy’ )
—((,0)=C(Y'=U)

oy , 1e(0,T)
oY’

W(”L) =0,

Y/(0,x) = Y (x), xe[0,L]
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fP Y=Y, (.x)e©.TYx(L,.L)
’ J =
+aPu=10. (t.x)e(0.T) x (0. L,]
'1PI
o) = -CP
y v
ap 1e(0, T)
- -(LL)y=0
Yy
LP(T.x)=0, xel0.L]
and 9, € [0, 1] are chosen so that:
UYL D), YU=pU'+(1—pwe', puel0,1]

T (L
‘D(U)=J J [Y(r.x)— ¥ (1, x)]* dx dr.
4]

L,

These kind of techniques have been investigated in
refs. [3. 7, 8].

CONCLUSIONS

Generally, temperalure transducers work in the
stationary state. In our problem the above ensemble
can be considered as a temperature transducer which
works in the transient state. It observes that this
ensemble utilizes a small part of the beginning of the
transient state of the heal transfer in the rod.

Remark. Because the time T chosen is rather small,
the requirements thal the thermal conductivity
coefficient and the thermal exchange coefficient must
vary as little as possible with the temperature occur
naturally. Nevertheless it is observed that in real situ-
ations the thermal exchange coefficient varies sig-
nificantly with the temperature.

From this point of view the authors show an
improvement of the algorithm above.

We design an instrument for measuring the tem-
perature U from the range [U,in, Unanl-

We shall determine experimentally the dependence
C(U), where U€[U,in» Unal- These values will be
memorized by a computer. We shall present in a future
paper the details about this experimental deter-
mination.

It is considered that the unknown temperature U is
situated in the range [U,, U,] © [Unins Umaxl-

The range [U,, U,] is divided in some subranges
and for each of them we consider that C, has a con-
stant value. For each of these subranges we compute
the value of U with the above type gradient algorithm
and the value of functional ®(U).

We shall keep Lhe subrange of the temperature
where we obtained the smallest value for ®. We note
this subrange with [U,, U.] and shall conlinue as
above.

In the practical problems we can consider the [ol-
lowing stop critlerions :

e The length of the range [U,, U.];
o The insignificant diminuation of the values of the
functional @ ;
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e Thc insignificant variation of the values of .

In a futurc paper we shall present some cxper-

imental results.
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