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Abstract--A numerical method to determine the variations of temperature is presented. The problem of 
measurement of the variations of temperature is mathematically modelled with the help of the one- 
dimensional heat conduction equation. This equation describes the heat transfer through an insulated long 
cylindrical rod. The variation of the temperature which is produced near one end of the rod is determined 
using some measurements of temperature in the other end of the rod and the mathematical model. This 

rod works as an attenuator of high temperatures and as an amplifier of low temperatures. 

INTRODUCTION 

IT IS KNOWN that  for the measurement  of  tempera ture  
we use some tempera ture  transducers_ They are div- 
ided in two classes : passive t ransducers  and self-gen- 
era t ing transducers.  Thermistors ,  res is tance- tem- 
perature  detectors,  semiconductor  tempera ture  
sensors are in the first class. Thermocouples  are 
impor t an t  elements in the second class [1, 2]. 

In this work the au thors  consider  the problem of  
measurement  of  the tempera ture  in which the 
u n k n o w n  tempera ture  is not  determined directly using 
tempera ture  transducers.  It is determined th rough  the 
formulat ion of  the measurement  problem as an opti- 
mal control  problem.  The  last p roblem can be solved 
using a numerical  computer .  

We use an ensemble which has as the principal 
c o m p o n e n t  a long cylindrical rod with a d iameter  that  
is as small as possible. The mater ial  from which the 
rod is developed is chosen so that  it satisfies the fol- 
lowing requi rements  : 

• The  melt ing tempera ture  must  be higher than  the 
tempera ture  to be measured ; 

• Perfectly homogeneous  ; 
• The thermal  conduct ivi ty  coefficient and the ther- 

mal exchange coefficient must  vary as little as possible 
with the temperature.  

Figure 1 shows the scheme of  the ensemble.  
The rod will be covered by a thermic  insulat ing 

layer made  from ceramics fibre. If  necessary, above it 

t Authorfor  correspondence. 
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we shall place a protected cover against  corrosive 
action of the medium in which the measurements  are 
realized. 

One end of  the rod will not  be covered by the 
insulated layer. This  will be the end which will be in 
contac t  with the point  in which we want  to measure 
the var ia t ion of  the temperature.  This end we shall 
name  "the hot  end '  

The other  end we shall name "the cold end' .  In a 
small area of  this end we place equidistantly,  on a 
generat ing line of  the rod, some temperature  trans- 
ducers, e.g. thermocouples .  These shall be placed 
directly on the rod, under  the therrnic insulat ing layer. 
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FIG. I. Scheme of the ensemble. 



1044 S. ANITA and N. DAMEAN 

N O M E N C L A T U R E  

C one positive real cons tan t  
C. thermal  exchange coefficient between rod 

and medium for measurement  [m ~] 
C~(~), (h-~ N) s e t o f t b e c o n t i n u o u s  

differentiable functions definite on 
f~ till the order  K 

C([0, 7-] : X) space of  the con t inuous  
functions from [0. T] to ,¥ 

H~(~2) = H'"v-'(f2). (S~ N) space of the 
functions Y6 L-'(f~) which have all the 
derivatives till the order  S belonged at 
L:(~) 

ln f  greatest lower bound 
L length of  the rod [mini 
L~ length of  the part  of  the rod on which thc 

temperature  t ransducers  are not  placed 
[ram] 

Le(f~), (Pc N*) space of  the funct ions 
P-sumable  on f~ 

U'(O, T: X). (X-Banach space over R) space 
of  the funct ions P-sumable  from [0, 7"] to 

n number  o f thc  tempera ture  t ransducers  on 
the rod 

N natural  numbers  system 
N* non-zero  natural  numbers  system 
R real numbers  system 
R* positive and non-zero real numbers  

system 
R" l inear space o f n  dimension on the real 

corp 
t time Is] 
T time of  measurement  of  the var ia t ion of  

temperature  which is produced near the 
hot  end of  the rod [s] 

U unknown  temperature  which must  be 
measured [K] 

U,, ~ U convergence of  the sequence U,, at U 
in the topological space W 

U = [M., M2] tempera ture  range where the 
unknown  temperature  Ucould  be si tuated 
[K] 

14"x'1'([0, T];  X), (X-Banacb space) space of  
the funct ions Y~ LI"(O, T: )() so that  
~')'/f~t'ELl'(O, T; .V), 1 <~ j <~ K, K e N  

x distance on the rod against  the hot end 
[mm] 

Y(t.x) temperature  of  the rod at the 
momen t  t in the point  x [K] 

Y,,(.v) initial tempera ture  in the point  x of  the 
rod, Y<,(x)= Y(O,x)[K] 

}"(t, ~) tempera ture  of  a point  from the cold 
end of  the rod which is measured by the 
tempera ture  t ransducers  [K] 

Y', Y'(I), Y,, Y,(I), Y,(t,.¥) derivative of  the 
following function Y: (0, T) x (O,L) ---, X 
o f t  

Y,, Y,(t,x) dcriv,'itive of  the following 
function Y: (0, T) × (0, L) ~ X o f x  

I,'~,, Y,,.(t,x) derivative of  the following 
fnnct ion Y, : (0, 7') × (0, L) ---, X of  x. 

Greek symbols 
thermal  conduct ivi ty  coefficient of  the rod 
[m-' s '] 

?/~v cxtcrior  normal  derivative at Cf2 
~Tf~ boundary  of  f~ 
f2 an open and bounded  subset  of  R". 

We consider  there are n t ransducers  on the rod. They 
are coupled with a compute r  using some analogue 
digital converters  and some memories.  

We shall explain the work of  this ensemble when 
the unknown  tempera ture  is higher than the tem- 
perature of  the medium. 

We wish to measure the unknown var ia t ion of  the 
tempera ture  which appears  near  the hot end of  the 
rod. We consider this temperature  U is cons tan t  dur-  
ing the time of  measurement  T. This var ia t ion  of  the 
temperature  is as a step ['unction. 

The length of  the rod L will be determined by the 
practical si tuation.  

Dur ing  time T, the var ia t ions  of  the tempera ture  
are measured with the #7 t ransducers  from the cold 
end. 

It is clear from the above  considera t ions  tha t  the 
tempera ture  of  the cold end will be much  smaller  than 
the measured temperature.  

Thus,  it can be considered that  this ensemble 
realizes the ['unction of  an a t t enua t ion  of  temperature.  
The central  idea of  measurement  is the calculat ion 
of the unknown  tempera ture  using the var ia t ions  of  
tempera ture  of  those n t ransducers  in the time of  
measurement  T. 

Certainly the ensemble works in a similar manne r  
when we want  to measure temperatures smaller than 
the temperature  of  the medium. In this case it can be 
considered that it realizes the function of  an amplifier 
of  temperature.  

T H E O R E T I C A L  A P P R O A C H  

The p h e n o m e n o n  described above  is modelled by a 
partial differential equa t ion  of  parabol ic  type, named 
the heat equat ion,  

Y,(t,x)-~tY,..,(t,x) = 0 ,  t~(O,T), x~(O,L) 

(l.i) 
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with the boundary  condi t ions,  of  the N e u m a n n  type : 

PY 
. ( t , 0 ) = - Y ~ ( t , O ) = C , ( U - Y ( t , O ) ) ,  te(O,T)  

( t .L )=  Y , ( t ,L)=O,  tE(O,T) (I.2) 
g'v 

and the initial condi t ion : 

Y(O..v) = Y,,(x). .x-e (0. L) (I .3) 

where : ~  R*,  ( ' IER  * , Y<,e/-f'(O, L). 
The value of  the measured temperature  U will be 

deterlnincd Irom the solution of  the following prob-  

lem. 

Minimize : 

,. 
@ ( U )  = I Y ( I , . v ) -  )"(t,-v)l  -~ d . v d t  (P)  

where YeL'-((O,T) x (L , ,L ) ) .  U e U  = [M~.M,_] 
c R, and Y(t ,x) is the solut ion of  the above problem 
( I . I ) - ( I . 3 ) .  solut ion which cor responds  to U. In 
the above  relation, f '(t,.v) represents the tempera-  
lures of  the points from the cold end of  the rod. 
They are obta ined  from an interpola t ion technique of  
the experimental  data  acquired by the t ransducers  T., 

r_, . . . . .  r,,. 
The funct ional  (b(/.)) has the semnification of the 

quadra t ic  mean error  between the values which were 
calculated and those which were measured in the cold 

end. 
It is observed that  the problem (1.1) (I.3) admits  

only a solution )'E W"Z([0, T] : L~-(O, L)) n L'(O, T; 
H'(O,L)). In addi t ion,  the function Y-+ }'(t) is 
weak con t inuous  from [0. T] to H~(O, T), that  is if 
U,, ~ t i  then (U,,, v) --+ ( U , c ) ,  Vc~H'(O.L)  [3]. 

We shall observe that  the problem (P) admits  at 
least an opt imal  solution,  that is, it exists (U*.c*) 
so that U * E U =  [ M i . M ? ]  and  Y* is the opt imal  
solut ion o f t h e  problem ( I. I ) (1.3) which corresponds  

to U*. 
Tha t  is equivalent  to : 

ql(U*) = I )"*(t, x ) -  t'(t,x)['- dx dt 
I I 

= lnf  ~ ( U ) .  
c~t, 

For  proving,  we note d =  ln l 'q) (U) ,  it is evident 
U e U  

that  d >~ 0. F rom this it results thai. it exists 
~(U,,, }",,)I,,~. ~ so that  Y, is the solution of  the problem 
(1.1) (1.3) which corresponds  to U e U a n d  

d<~ IY, ,( t , .v)-~'( t ,v) l ' -d-vdt<d+ • 
I - I  I I  

(2) 

Because { U,,i,,~x is a bounded  system of  functions,  

it n]eans that  at subsystem of  this (for which we use 
idcntic:d nota t ion) ,  one obta ins  : U, -+ U,* (the Cesfiro 
l emma) .  

Multiplying (1.1) with J',, and Y,, respectively. 
we obtain : 

Ii Y . ( t ) l l , : , . . , , +  II Y,111,.: ..... , ...... ,,, ~< C. 

where C is a positive real const.'mt. The p roof  of  this 
result is clear. For  example if we multiply ( I . I )  by Y,. 
we obta in  : 

Y,, r,, - : ~ L ,  E , .  = o. 

which is equivalent  to 

~l E , ) , - ~ - : ~ r , ,  Y,, = o. 

I n t e g r a t i n g  on  ((I. T )  x (0. L)  wc o b t a i n  • 

'f'f' I'f' ( t ' , , ) ~ d x d t - : ~  Y Y d .x-d t=O,  
2 I I I I 

and i f  we use G r e e n ' s  t h e o r e m  and  re l a t i on  (1 .2 ) :  

',r' 7 1",~ d x  
- -  ,)11 

I ' / I '  f " ) + :t V ),~ d.v - i" " 
I I l l l . / i  ~ l '  co  d t  = 0 

• ¢* ,~ Y,-', (t, x) d . v -  Y,~(0, x) dx 
- -  o - -  J l l  

; , f ,  
+ e  V Y , ~ d x d t = 0  

I I 

<=- = ) . ( 0 .  x )  d r  ) ,7(t ,  x )  d .v  " :  
I I 

I'I' 
-2~  VY,~ d.vdt~!IY,,(tlll,:...I,<~ C- 

In the same manne r  it results that  : 

Thus.  we obta ined the above inequality. 
Using the Arzel£1 lemma it results that  the system 

o1 funct ions )',, is relatively compact  in 
C([0, T ] L - ' ( 0 .  L)). From that  for a subsysteln of 
functions of  Y, (using identical nota t ion)  one obta ins  : 

Y,,--+ Y,* inC([O,T];L~-(O,L)) (3) 

and that  Y* is the solution of  the problem (1.1)-(I .3) ,  
the solution which corresponds  to U*. 

F rom (2) and (3) it follows therefore that  q)(/_,',,) ---, 

4~1U*). 
Hence, ( U*, Y*) is an opt imal  pair for the problem 

(P). 
In succession, we shall find the opt imal  condi t ions  

for the problem (P). 
Theorem. The pair (U*, Y*) is an opt imal  one 

for the problem (P) if and only if 
p~WI-z([O,T]:L2(O,L))nL2(O,T;W2e(O,L))  so 
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that P is a solution of the problem " 

{ Y*-}" ,  (t,x) c(O,T)×(Lt,L) 
P,+otP~.,= 0, ( t , x ) e ( 0 ,  T ) × ( 0 ,  L~) 

(4.1) 
c~P 
~-( t ,  0 ) =  -P.~(t,O)= -C , P ,  tc(O,T) 
ov 

OP 
~.v(t ,L)=P,,(t ,L)=O, tc(O,T) (4.2) 

P(T,x) = O, x c ( 0 ,  L) (4.3) 

and it h a p p e n s  

f T 
M_~, if I .  P(t,O) dt> 0 

U* = (5) 

Mr,  if P(h0)  dt < 0. 

Remark. Because PcL- ' (0 ,  T; W2-'(0, L)) and 
W'-"-(O,L) ~ C((0, L)) therefore it is significant to 
speak about  

fo r P( t, O) dt. 

Proof:  We consider P c  Wb-'([0, 7"] : L'-(O, L)) c~ 
LZ(0, T; W2"-(O,L)) the solution of the problem 
(4.1)-(4.3). 

The existence of  the solution of  the problem (4.1)- 
(4.3) is demonstrated in more general condit ions in 
ref. [4]. 

If (U*, Y*) is an optimal pair  for the problem (P), 
then : 

f o r f f ' Y * ( t , x ) - Y ( t , x ) ' 2 d x d t  
i 

<~ IYV'+~"(t,x)-~'(t,x)12dxdt (6) 
i 

V 2 > 0 ,  VvcR, i fU*c(Mi,M2),  

Vv>O, i f U * = M ~ ,  and 

V v < 0 ,  i f U * = M _ ,  

where yr,+z,, is the solution of  the problem (1.1)- 
(1.3) which corresponds to U * +  2v. 

From (6) it results that  : 

forf-(yv'+~."_y*)(yV'+~"+y*_2~,')dxdt>~O. 
i 

We divide the above expression through ). and then 
we realize ). ~ 0. We obtain : 

for;Z( t ,x)[Y*(t ,x)-~ ' ( t ,x)]dxdt>~O, (7) 
i 

where Z • W L'-([0, T] ; L'-(0, L)) n L2(0, T; Hi (0 ,  L)) 
is the solution of the problem : 

Z,-~'Z.,..,.=O, (t,x)e((O,T)×(O,L)) (8.1) 

OZ 
w-( t ,O)  = - Z , . ( t , O ) =  -C, (Z( t ,O)-v) ,  tE(O,T) 
C V  

OZ 
~ ( t , L ) = Z . , ( t , L ) = O ,  tc(O,T) (8.2) 

Z(O,x) = 0, x e  (0, L). (8.3) 

We multiply (4.1) by Z, integrate on (0, T)×(O,L) 
and obtain : 

(P,Z+~P.,.~Z) dxdt = Z ( Y * -  }~) dx dt 
, i  

T L 

+ c~ (t, 0)Z(L O) + ~- (t, L)Z(t, L) dt ' OV 

= Z ( Y * -  1 ~) d x  dt.  
i 

Using (4.2), (4.3), (8.3) we get '  

- (PZ,+~'p~zx) dxdt 

fT - ~  C~P(t,O)Z(t,O) dt 
o 

= Z ( Y * -  Y) dx dt. (9) 
i 

We multiply (8.1) by P, integrate on (0, T ) x  (0, L) 
and acquire : 

f f ; (Z ,P-~tZ~.~P)  d x d t = O  

¢~forfo(Z,P+aZ.pOdxdt 
- ,O)P(t,O)+~v(t,L)P(t,L ) d t = 0 .  

Using (8_2) we obtain : 

frofo'(Z,P+~Z.,P,,)dxdt 

= -.f:c.(z(t.o)-v)P(t.o) dt 

 fofo: (Z,P+~tzxp~)dxdt 

= --~ C~Z(t,O)P(t,O) dt 

+u C.vP(t,O) dt. (10) o 
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From (9) and (10) we get:  

Z ( Y * -  ~') d x d t  = - c tC ,  P(t ,O)vdt .  
i 

From (7) and (I 1) we get : 

-~ tC ,e  P(/,O) dt >i O. 

Hence, 

f rp( t ,O)  dt > O=~t, <~ O ~  U* = M ,  

fo "P(t,O) dt < O ~ c  > 1 0 ~  U* = Ml .  

( l i )  

Consequently, (5) is true, hence the necessary con- 
dition was demonstrated. 

The sufficiency of  the conditions (4) and (5) results 
immediately from the linearity of  the problem (1.1) 
(1.3) and the convexity of  the cost functional @(U) 

[51. 
Remark. The problem (P) can be looked at as a 

problem with impulsional control on the boundary, 
for the heat equation, in the domain f~ = (0, L) c R N, 
with N = 1. In the case N = 2 or N = 3 the problem 
is very difficult [6]. It could certainly use a model in 
which f~ c R 2 or ~ c R -~. We stopped here with the 
model which appeared to be suitable to the enunciated 
problem. 

N U M E R I C A L  A P P R O A C H  

For the numerical calculation of  the temperature 
U, which is an optimal control problem, as is seen 
before, we shall use one type of  gradient algorithm. 

In view of  the relations (1_1)-(1.3), (4.1)-(4.3), (5), 
we consider the following iterative algorithm : 

where : 

U j+' = 6jU j + ( l - 6 i ) # ,  

[i M~, f^ Pi(t,O) dt > 0 

U j = 

f: M , if  W(t ,O) dt < 0. 

U j, PJ are computed from : 

Y[ -~Y~ . , .=O,  ( t , x ) ~ ( O , T ) x ( O , L )  
Oy ~ 
O~-(t,O) = C , ( y  j -  U i) 

, t e (O,  T) 
Oy j 
~ f  (t, L) = o, 

YJ(0,x) = Yo(x), xe[O.L]  

, { Y ' - ~ ' ,  
P' +~P'~ = O, 

?p'  
~ - ( t , O )  = - C L P '  
( ' y  

?pJ 
(t, L) = 0 

( ' y  

(t, x) ~ (0, T) x (L,,  L) 

( t ,x )6(O,  T) × (0, L,] 

t6(0,  T) 

P ' ( T , x ) = O ,  xE [0, L] 

and 6 i • [0, I] are chosen so that:  

@(U j+)) <~@(U), V U = # U ' + ( 1 - t t ) t  ,i, i te[0 ,1]  

@(U) = [ g ( t , x ) -  l~(t,x)[ 2 dx dl. 

These kind of  techniques have been investigated in 
refs. [3, 7, 8]. 

CONCLUSIONS 

Generally, temperature transducers work in the 
stationary state. In our problem the above ensemble 
can be considered as a temperature transducer which 
works in the transient state. It observes that this 
ensemble utilizes a small part of  the beginning of  the 
transient state of  the heat transfer in the rod. 

Rema,-k. Because the time T chosen is rather small, 
the requirements that the thermal conductivity 
coeffÉcient and the thermal exchange coefficient must 
vary as little as possible with the temperature occur 
naturally. Nevertheless it is observed that in real situ- 
ations the thermal exchange coefficient varies sig- 
nificantly with the temperature. 

From this point of  view the authors show an 
improvement  of  the algorithm above. 

We design an instrument for measuring the tem- 
perature U from the range [Umi,, U,,,~]. 

We shall determine experimentally the dependence 
C,(U) ,  where U~[U,,,o, Um,,~]. These values will be 
memorized by a computer.  We shall present in a future 
paper the details about  this experimental deter- 
mination. 

It is considered that the unknown temperature U is 
situated in the range [U,, U,_] c lUmp,, Um,x]. 

The range [U,, U2] is divided in some subranges 
and for each of  them we consider that C~ has a con- 
stant value. For  each of  these subranges we compute 
the value of  U with the above type gradient algorithm 
and the value of  functional ~(U)_ 

We shall keep the subrange of  the temperature 
where we obtained the smallest value for @. We note 
this subrange with [U,, U_,] and shall continue as 
above. 

In the practical problems we can consider the fol- 
lowing stop criterions : 

• The length of  the range [U,, U2] ; 
• The insignificant diminuation of  the values of  the 

functional @ ; 
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• The  insignificant var ia t ion  o f  the values of  U. 

In a I'uturc pape r  we shall present  some expcr- 
imcnt:tl results. 
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